Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato- $\kappa^2 O, O'$)cobalt(II)

Hui-Hui Xing,^a Zi-Lu Chen^a and Seik Weng Ng^{b*}

^aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Gulin 541004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 30 July 2007; accepted 30 July 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.086; data-to-parameter ratio = 11.9.

The Co atom of the title compound, $[Co(C_5H_3N_2O_4)_2(H_2O)_2]$, lies on a center of inversion and is chelated by the 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate anion through its 5-carboxylate and 4-oxo donor atoms. The other two sites of the octahedron around the metal atom are occupied by water molecules. The water molecules and amino groups serve as donors to other acceptor sites, giving rise to a threedimensional hydrogen-bonded network.

Related literature

For the crystal structure of 2,4-dioxo-1,2,3,4-tetrahydropyridimine-5-carboxylic acid as the monohydrate, see Law *et al.* (2004). For the crystal structures of other water-coordinated metal derivatives, see Maistralis *et al.* (1991) (Mn), Baran *et al.* (1996) (Fe), Sun & Jin (2004) (Fe and Co) and Luo *et al.* (2002) (Cu).

Experimental

Crystal data $\begin{bmatrix} Co(C_5H_3N_2O_4)_2(H_2O)_2 \end{bmatrix}$ $M_r = 405.15$ Monoclinic, $P2_1/n$ a = 5.0608 (6) Å b = 15.087 (2) Å c = 9.290 (1) Å $\beta = 99.389$ (1)°

 $V = 699.8 (2) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.30 \text{ mm}^{-1}$ T = 295 (2) K $0.20 \times 0.20 \times 0.10 \text{ mm}$ metal-organic compounds

 $R_{\rm int} = 0.020$

4291 measured reflections

1605 independent reflections 1308 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.743, \ T_{\max} = 0.881$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	5 restraints
$wR(F^2) = 0.086$	All H-atom parameters refined
S = 1.05	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
1605 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
135 parameters	

Table 1

Selected bond lengths (Å).

Co1-O1	2.037 (1)	Co1-O1W	2.135 (2)
Co1-O3	2.058 (1)		

Table 2			
Hydrogen-bond geometry	(Å.	°).	

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.85(1)	1.98 (1)	2.823 (2)	175 (3)
0.85 (1)	2.14 (1)	2.959 (2)	165 (3)
0.85 (1)	1.81 (1)	2.667 (2)	177 (3)
0.85 (1)	1.98 (1)	2.822 (2)	171 (3)
	<i>D</i> -H 0.85 (1) 0.85 (1) 0.85 (1) 0.85 (1)	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.85 (1) & 1.98 (1) \\ 0.85 (1) & 2.14 (1) \\ 0.85 (1) & 1.81 (1) \\ 0.85 (1) & 1.98 (1) \\ \hline \end{array}$	$\begin{array}{c ccccc} D-H & H\cdots A & D\cdots A \\ \hline 0.85 (1) & 1.98 (1) & 2.823 (2) \\ 0.85 (1) & 2.14 (1) & 2.959 (2) \\ 0.85 (1) & 1.81 (1) & 2.667 (2) \\ 0.85 (1) & 1.98 (1) & 2.822 (2) \\ \hline \end{array}$

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z + 1; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 2, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2007).

The authors thank the Scientifc Research Foundation of Guangxi Normal University, the Science Foundation of Guangxi (grant No. 0542021) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2460).

References

- Baran, E., Mercaser, R. C., Hueso-Ureña, F., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Salas-Peregrin, J. M. (1996). *Polyhedron*, 15, 1717– 1724.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2004). *APEX2* (Version 1.22A) and *SAINT* (Version 7.12A). Bruker AXS Inc., Madison, Winconsin, USA.
- Law, G.-L., Szeto, L. & Wong, W.-T. (2004). Acta Cryst. E60, o1072-o1074.
- Luo, J.-H., Hong, M.-C., Zhao, Y.-J., Cao, R. & Weng, J.-B. (2002). Chin. J. Struct. Chem. 21, 392–395.
- Maistralis, G., Katsaros, N., Mentzafos, D. & Terzis, A. (1991). Acta Cryst. C47, 740–743.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, C.-Y. & Jin, L.-P. (2004). Polyhedron, 23, 2227-2233.
- Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m2267 [doi:10.1107/S1600536807037312]

Diaquabis(2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato- $\kappa^2 O, O'$)cobalt(II)

H.-H. Xing, Z.-L. Chen and S. W. Ng

Comment

2,4-Dihydroxypyridimine-5-carboxylic acid crystallizes as a monohydrate; the 2,4-dihydroxypyrimidinyl portion of the molecule exists a 2,4-dioxo-1,2,3,4-tetrahydropyrimidinyl entity having secondary nitrogen atoms and exocyclic carbon–oxygen double bonds (Law *et al.*, 2004). The features are retained in the diaquamanganese(II) (Maistralis *et al.*, 1991), dihydrated diaquairon(II) (Baran *et al.*, 1996), triaquacobalt(II), triaquanickel(II) (Sun & Jin, 2004) and diaquacopper(II) (Luo *et al.*, 2002) derivatives; the anion chelates to the metal atoms through the 5-carboxylato and 4-oxo oxygen atoms. The diaquamanganese (Maistralis *et al.*, 1991), diaquacopper (Luo *et al.*, 2002) and the present diaquacobalt(II) compounds are isostructural; two carboxylate monoanions chelate in this manner across a center of inversion. Hydrogen bonds link adjacent octahedral molecules into a three-dimensional network.

Experimental

Cobalt(II) acetate hexahydrate (0.062 g, 0.25 mmol) and 2,4-dihydroxypyrimidine-5-carboxylic acid (0.087 g, 0.5 mmol) were placed in a 23-ml, Telefon-lined, stainless-steel Parr bomb together with water (6 ml) and THF (4 ml). The bomb was heated to 383 K for 144 h; it was then cooled over 48 h. Pink crystals were isolated in 70% yield.

Refinement

All hydrogen atoms were located in a difference Fourier map, and were refined with distance restraints of C—H 0.95 (1) Å, N—H = O—H = 0.85 (1) Å. Their temperature factors were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot of $Co(C_5H_3N_2O_4)_2(H_2O)_2$. The molecule lies about a center-of-inversion, and the unlabeled atoms are related to the labeled ones by 1 - x, 1 - y, 1 - z.

Diaquabis(2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato- κ²O,O')cobalt(II)

Crystal data	
$[Co(C_5H_3N_2O_4)_2(H_2O)_2]$	$F_{000} = 410$
$M_r = 405.15$	$D_{\rm x} = 1.923 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1901 reflections

a = 5.0608 (6) Å
b = 15.087 (2) Å
c = 9.290(1) Å
$\beta = 99.389 (1)^{\circ}$
$V = 699.8 (2) \text{ Å}^3$
Z = 2

Data collection

Bruker APEXII area-detector diffractometer	1605 independent reflections
Radiation source: fine-focus sealed tube	1308 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 295(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.743, T_{\max} = 0.881$	$k = -19 \rightarrow 17$
4291 measured reflections	$l = -9 \rightarrow 12$

 $\theta = 2.6\text{--}27.5^{o}$

 $\mu = 1.30 \text{ mm}^{-1}$

T = 295 (2) K Block, pink

 $0.20\times0.20\times0.10~mm$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	All H-atom parameters refined
$wR(F^2) = 0.086$	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.1507P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
1605 reflections	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
135 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
5 restraints	Extinction correction: none

Primary atom site location: structure-invariant direct methods

				. 2
Fractional atomic coordinates	and isotropic or e	eauivalent isotropi	ic displacement	parameters $(Å^2)$
				p

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Co1	0.5000	0.5000	0.5000	0.02430 (14)
O1	0.2334 (3)	0.4047 (1)	0.4163 (2)	0.0289 (3)
O2	0.0616 (3)	0.2948 (1)	0.2730 (2)	0.0292 (3)
O3	0.6389 (3)	0.5050(1)	0.3040 (2)	0.0267 (3)
O4	0.8892 (3)	0.4044 (1)	-0.1094 (2)	0.0314 (4)
O1W	0.7933 (3)	0.4003 (1)	0.5678 (2)	0.0322 (4)
N1	0.5619 (4)	0.3281 (1)	-0.0207 (2)	0.0264 (4)
N2	0.7483 (3)	0.4527 (1)	0.0975 (2)	0.0223 (4)
C1	0.2244 (4)	0.3567 (1)	0.3041 (2)	0.0218 (4)
C2	0.4114 (4)	0.3746 (1)	0.1976 (2)	0.0219 (4)

C3	0.4047 (4)	0.3190(1)	0.0823 (2)	0.0257 (4)
C4	0.7430 (4)	0.3953 (1)	-0.0169 (2)	0.0240 (4)
C5	0.5999 (4)	0.4468 (1)	0.2087 (2)	0.0215 (4)
H11	0.930 (4)	0.403 (2)	0.527 (3)	0.07 (1)*
H12	0.842 (5)	0.394 (2)	0.659(1)	0.05 (1)*
H1	0.557 (5)	0.288 (1)	-0.085 (2)	0.04 (1)*
H2	0.848 (5)	0.498 (1)	0.107 (3)	0.04 (1)*
H3	0.289 (4)	0.270(1)	0.064 (2)	0.03 (1)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.0236 (2)	0.0294 (2)	0.0220 (2)	-0.0043 (2)	0.0099 (2)	-0.0052 (2)
O1	0.0257 (7)	0.0373 (8)	0.0264 (8)	-0.0079 (6)	0.0118 (6)	-0.0074 (6)
O2	0.0324 (8)	0.0296 (8)	0.0266 (8)	-0.0086 (6)	0.0071 (6)	0.0023 (6)
O3	0.0303 (8)	0.0298 (8)	0.0223 (8)	-0.0066 (6)	0.0114 (6)	-0.0064 (6)
O4	0.0318 (8)	0.0403 (9)	0.0249 (8)	-0.0068 (6)	0.0130 (6)	-0.0051 (6)
O1W	0.0298 (9)	0.0377 (9)	0.0309 (9)	0.0008 (7)	0.0104 (7)	0.0001 (7)
N1	0.0294 (9)	0.0270 (9)	0.0245 (9)	-0.0028 (7)	0.0091 (7)	-0.0066 (7)
N2	0.0230 (9)	0.0247 (9)	0.0204 (8)	-0.0033 (7)	0.0075 (7)	-0.0015 (7)
C1	0.021 (1)	0.024 (1)	0.021 (1)	0.002 (1)	0.005 (1)	0.003 (1)
C2	0.022 (1)	0.023 (1)	0.022 (1)	0.000(1)	0.006 (1)	0.000(1)
C3	0.025 (1)	0.024 (1)	0.029(1)	-0.002(1)	0.008 (1)	-0.001 (1)
C4	0.022 (1)	0.028 (1)	0.022 (1)	0.001 (1)	0.006 (1)	0.000(1)
C5	0.021 (1)	0.024 (1)	0.020(1)	0.002 (1)	0.006 (1)	0.003 (1)

Geometric parameters (Å, °)

Co1—O1	2.037 (1)	N1—C4	1.364 (3)
Co1—O1 ⁱ	2.037 (1)	N2—C4	1.367 (2)
Co1—O3	2.058 (1)	N2—C5	1.376 (2)
Co1—O3 ⁱ	2.058 (1)	C1—C2	1.501 (3)
Co1—O1W	2.135 (2)	C2—C3	1.357 (3)
Co1—O1W ⁱ	2.135 (2)	C2—C5	1.440 (3)
O1—C1	1.265 (2)	O1W—H11	0.85 (1)
O2—C1	1.247 (2)	O1W—H12	0.85 (1)
O3—C5	1.239 (2)	N1—H1	0.85 (1)
O4—C4	1.230 (2)	N2—H2	0.85(1)
N1—C3	1.347 (3)	С3—Н3	0.94 (1)
01 ⁱ —Co1—O1	180.0	O1—C1—C2	119.9 (2)
O1 ⁱ —Co1—O3 ⁱ	89.33 (5)	C3—C2—C5	117.1 (2)
O1—Co1—O3 ⁱ	90.67 (5)	C3—C2—C1	118.1 (2)
01 ⁱ —Co1—O3	90.67 (5)	C5—C2—C1	124.8 (2)
O1—Co1—O3	89.33 (5)	N1—C3—C2	123.8 (2)
O3 ⁱ —Co1—O3	180.0	O4—C4—N1	122.9 (2)
O1 ⁱ —Co1—O1W	89.97 (7)	O4—C4—N2	122.3 (2)
O1—Co1—O1W	90.03 (7)	N1—C4—N2	114.8 (2)

O3 ⁱ —Co1—O1W	92.00 (6)	O3—C5—N2	116.6 (2)
O3—Co1—O1W	88.00 (6)	O3—C5—C2	127.8 (2)
O1 ⁱ —Co1—O1W ⁱ	90.03 (7)	N2—C5—C2	115.5 (2)
O1—Co1—O1W ⁱ	89.97 (7)	Co1—O1W—H11	114 (2)
O3 ⁱ —Co1—O1W ⁱ	88.00 (6)	Co1—O1W—H12	117 (2)
O3—Co1—O1W ⁱ	92.00 (6)	H11—O1W—H12	109 (3)
O1W—Co1—O1W ⁱ	180.0	C3—N1—H1	118 (2)
C1—O1—Co1	130.7 (1)	C4—N1—H1	120 (2)
C5—O3—Co1	124.7 (1)	C4—N2—H2	122 (2)
C3—N1—C4	122.0 (2)	C5—N2—H2	111 (2)
C4—N2—C5	126.8 (2)	N1—C3—H3	112.0 (13)
O2—C1—O1	123.6 (2)	С2—С3—Н3	124.2 (13)
O2—C1—C2	116.5 (2)		
O3 ⁱ —Co1—O1—C1	-164.2 (2)	C5—C2—C3—N1	-0.4 (3)
O3—Co1—O1—C1	15.8 (2)	C1—C2—C3—N1	179.9 (2)
O1W—Co1—O1—C1	-72.2 (2)	C3—N1—C4—O4	179.6 (2)
O1W ⁱ —Co1—O1—C1	107.8 (2)	C3—N1—C4—N2	-1.0 (3)
O1 ⁱ —Co1—O3—C5	162.5 (2)	C5—N2—C4—O4	-177.8 (2)
O1—Co1—O3—C5	-17.5 (2)	C5—N2—C4—N1	2.8 (3)
O1W—Co1—O3—C5	72.5 (2)	Co1—O3—C5—N2	-168.1 (1)
O1W ⁱ —Co1—O3—C5	-107.5 (2)	Co1—O3—C5—C2	13.9 (3)
Co1—O1—C1—O2	173.1 (1)	C4—N2—C5—O3	178.5 (2)
Co1—O1—C1—C2	-8.7 (3)	C4—N2—C5—C2	-3.2 (3)
O2—C1—C2—C3	-4.9 (3)	C3—C2—C5—O3	179.9 (2)
O1—C1—C2—C3	176.8 (2)	C1—C2—C5—O3	-0.4 (3)
O2—C1—C2—C5	175.4 (2)	C3—C2—C5—N2	1.8 (3)
O1—C1—C2—C5	-2.9 (3)	C1—C2—C5—N2	-178.5 (2)
C4—N1—C3—C2	-0.1 (3)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H11···O1 ⁱⁱ	0.85 (1)	1.98 (1)	2.823 (2)	175 (3)
O1W—H12···O4 ⁱⁱⁱ	0.85 (1)	2.14 (1)	2.959 (2)	165 (3)
N1—H1···O2 ^{iv}	0.85 (1)	1.81 (1)	2.667 (2)	177 (3)
$N2-H2\cdots O4^{v}$	0.85 (1)	1.98 (1)	2.822 (2)	171 (3)

Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) *x*, *y*, *z*+1; (iv) *x*+1/2, -*y*+1/2, *z*-1/2; (v) -*x*+2, -*y*+1, -*z*.

Fig. 1